Getting ready to present

Describing figures:
On/at the edge

At the top			
On the left \quad in the shaded area	on the right		
At the bottom	In the corner		

Here, we can see....
The arrow indicates
X is indicated by arrows, numbers, triangles etc.
In this example...
Here X is shown...
A is marked by the colour red /in red
Here...There...
Describing a process/sequence:
First.... then...next... finally $\quad \mathrm{X}$ results in Y
After staining, X is subjec \dagger to....
When X has occurred then Y can DO...

Comparing:

If we compare the figure on the left to/with the figure on the right...
After comparison of X and Y, we can observe...
Greater than>/ smaller than <
A small variation was observed....
This figure can be compared to....
These variables, taken together, indicate....
The values are higher/lower than expected
There were less than/ more than Y is not as ADJECTIVE as X
A slightly larger/smaller zone can be observed
There is a considerable difference between / disparity between

Numbers:

Tens 57 Hundreds 495 Thousands 5836
Decimals: $4.56,3.147,0.4$ at 0.56 P did not reach a significant value/ was not significant
The values for this outcome are consistent/ not consistent with...
The 6 variables showed the same tendency
\checkmark A rise in $X /$ and increase in X / X has increased/ has gone up
\& there was a decrease in $\mathrm{Y} /$ a drop in Y / Y has reduced
\rightarrow the value is stable/constant there is little variation between these values

Signposting: Beginning? Middle? Ending? Figures? Visual aids?

Look at the expressions below. When would you expect to hear them in a presentation? What is the role of each expression?
Can you think of any other things you may want to say?

	Role? Function?
On the left/on the right of the figure we can see...	
Finally...	
First, I'd like to outline the main features of...	
How does a virus enter a cell? What happens in the	
nucleus?	
I will be looking at various aspects of this phenomenon...	
It is interesting to note...	
Let me conclude by saying/showing...	
Let me describe the key points...	
Let's look more closely at this figure....	
Now, I'd like to move on and discuss another...	
On the next slide you can see...	
Thank you for your attention...	
The horizontal/vertical axis represents...	
Here, we can see...	
This graph/figure/photo shows...	
This is the final point I would like to make...	
This needs to be compared to...	
To sum up,	
Today, we are going to present the mechanism of...	
As you can see from this slide...	
Let me just mention/add	
I would also like to stress/emphasize/underline that...	
What is significant/important here is....	
In contrast,	
Moving on (to)...	

Questions:

If I understand you correctly, then $\mathrm{X}=\mathrm{Y}+2$?
Could you clarify/explain X in more detail?
Would you mind returning to the first slide, please?
Could you go over this figure again?
Have you considered the possibility that...?
How do you explain...?
What results did you find for X ?
What is the next step for you?
How do you think this might be exploited?
Useful verbs: cause, generate, demonstrate, show, lead to, induce, result in, result from, produce, deal with, target, carry out...

```
    1. Numbers, dates and statistics
Tens 57
Hundreds 495
Thousands 5836
Decimals: 4.56, 3.147, 0.4 at 0.56 P did not reach a significant value/ was not significant
Greater than>/ smaller than <
A small variation was observed....
This figure can be compared to....
These variables, taken together, indicate....
The values are higher/lower than expected
There were less than/ more than
The values for this outcome are consistent/ not consistent with....
The 6 variables showed the same tendency
* A rise in X / and increase in X/ X has increased/ has gone up
 there was a decrease in Y/ a drop in Y/ Y has reduced
the value is stable/constant there is little variation between these values
    2. Procedure/Method
The drug was administered before/ during /after
Information was collected and analysed.... From the sample
An adjustment for.... was made....
Experiments were carried out....
Samples were screened for/ controlled for
prior to...subsequent to.
3. Linking cause and effect:
X is a cause of Y
X leads to Y
Y may be due to X
One cause of X could be Y
    3. Referring to Powerpoint slides.
If we look at the figure.... This graph shows
Here we can see.... The horizontal axis represents/the vertical axis represents
On this slide you can see.....
On the next slide,
On the left
On the right
    4. Hypothesizing
X should be / is expected to be = a logical supposition
X may be due to Y = 50% yes/ 50% no
X could/might be = It is possible but we cannot conclude / we cannot be sure
X cannot be Y - it is impossible
```

KEY WORDS - get them to propose 10 key words and expressions they will say several times

Rhythm: from written to oral communication

Short Interspersed Elements (SINEs): The Alu Example

Alu elements are highly repetitive DNA sequences that can be classified as SINEs (short interspersed elements), which are themselves a type of "nonautonomous" retrotransposon. (Retrotransposons are TEs that move about the genome via an RNA intermediary.) An Alu element is transcribed into messenger RNA by RNA polymerase and then converted into a double-stranded DNA molecule by reverse transcriptase. The new doublestranded DNA molecule is then inserted into a new location in the genome. Because they are nonautonomous, like all SINEs, Alu elements don't have the genetic capacity to produce DNA copies of themselves or to integrate into new chromosomal locations. For those activities, they rely on another type of transposon, called L1. Most Alu elements are approximately 300 base pairs long, with considerable sequence variation

Short Interspersed Elements (SINEs): The Alu Example

Alu elements are highly repetitive DNA sequences that can be classified as SINEs (short interspersed elements), which are themselves a type of "nonautonomous" retrotransposon. (Retrotransposons are TEs that move about the genome via an RNA intermediary.) An Alu element is transcribed into messenger RNA by RNA polymerase and then converted into a double-stranded DNA molecule by reverse transcriptase. The new doublestranded DNA molecule is then inserted into a new location in the genome. Because they are nonautonomous, like all SINEs, Alu elements don't have the genetic capacity to produce DNA copies of themselves or to integrate into new chromosomal locations. For those activities, they rely on another type of transposon, called Ll. Most Alu elements are approximately 300 base pairs long, with considerable sequence variation

